博客
关于我
E. Sonya and Ice Cream【树的直径+单调队列】
阅读量:528 次
发布时间:2019-03-08

本文共 2519 字,大约阅读时间需要 8 分钟。

要解决从n个节点的树中选出k个连续顶点,使得这些顶点中的其他点到这k个点的最大距离最小,我们可以按照以下步骤进行优化和解决问题:

1. 计算树的直径

使用两次深度优先搜索(DFS)来确定树的直径。第一次DFS从任意一点出发,找到离该点最远的点u,作为直径的一端。第二次DFS从u出发,找到离u最远的点v,作为直径的另一端。

2. 计算各顶点到直径端点的距离

对于每个顶点,计算其到直径端点u和v的距离。这可以通过两次DFS完成:第一次从u出发,记录每个节点的距离;第二次从v出发,记录每个节点的距离。

3. 枚举直径上的连续k个顶点窗口

在直径上进行滑动窗口,求出所有长度为k的连续顶点窗口。每个窗口包括窗口的端点以及内部的k-2个顶点。

4. 使用单调队列计算窗口的最大值

将窗口的两个端点及预处理的直径距离存储在单调队列中,根据队列中的值维护当前窗口的最大距离。每次移动窗口时,更新队列以确保最大距离准确。

5. 表达最优解

根据分析,连续k个顶点窗口的最大距离等于窗口的两个端点到直径端点的距离的最大值。最终,最小最大距离即为直径窗口中各个可能窗口中的最大距离的最小值。

伪代码实现

#include 
using namespace std;typedef long long ll;const int N = 1e5 + 5;const int MOD = 1e9 + 7;typedef vector
> edgeType;vector
edge;vector
dis, maxsubtree, bet, a, sum;int par[N], vis[N], st, ed, diam[N], q;ll maxlen = 0, n, k;void dfs(int u, int f) { par[u] = f; for (auto &t : edge[u]) { int v = t.first, w = t.second; if (v != f && !vis[v]) { dis[v] = dis[u] + w; if (dis[v] > maxlen) maxlen = dis[v]; dfs(v, u); } }}void FindDiameter() { dis = {0}, vis = {false}; DFS(1, -1); int mx = -1, st = 1; for (int i = 1; i <= n; i++) if (dis[i] > mx) { mx = dis[i], st = i; } dis = {0}, vis = {false}; DFS(st, -1); mx = -1, ed = 1; for (int i = 1; i <= n; i++) if (dis[i] > mx) { mx = dis[i], ed = i; } for (int i = ed; i; i = par[i]) { diam[i] = dis[i]; dis[i] = 0; }}void FindMaxlenToSubtree() { k = min(k, (ll)diam.size()); for (int u : diam) vis[u] = 1; for (int u : diam) { maxlen = 0; dis[u] = 0; DFS(u, -1); maxsubtree.push_back(maxlen); dis[u] = 0; }}int main() { cin >> n >> k; for (int i = 1; i < n; i++) { int u, v, w; cin >> u >> v >> w; edge[u].push_back({v, w}); edge[v].push_back({u, w}); } FindDiameter(); FindMaxlenToSubtree(); q = deque
>(); for (int i = 0, j = 0; i <= (ll)diam.size() - k; i++) { while (j <= i + k - 1) { while (!q.empty() && maxsubtree[j] > q.back().first) q.pop_back(); q.push_back({maxsubtree[j], j}); j++; } while (q.front().second < i) q.pop_front(); ll current_max = q.front().first; if (current_max < ans) ans = current_max; if (i + k < diam.size()) { while (!q.empty() && maxsubtree[i + k] > q.back().first) q.pop_back(); q.push_back({maxsubtree[i + k], i + k}); } } cout << ans;}

结论

通过上述步骤,我们能够高效地计算出k个连续顶点,使得其他顶点到这k个点的最大距离最小化。该方法的主要亮点在于利用树的直径性质,并结合单调队列滑动窗口技术,确保算法在O(n)的时间复杂度内完成计算,适用于大规模数据。

转载地址:http://kfkiz.baihongyu.com/

你可能感兴趣的文章
mySQL 多个表求多个count
查看>>
mysql 多字段删除重复数据,保留最小id数据
查看>>
MySQL 多表联合查询:UNION 和 JOIN 分析
查看>>
MySQL 大数据量快速插入方法和语句优化
查看>>
mysql 如何给SQL添加索引
查看>>
mysql 字段区分大小写
查看>>
mysql 字段合并问题(group_concat)
查看>>
mysql 字段类型类型
查看>>
MySQL 字符串截取函数,字段截取,字符串截取
查看>>
MySQL 存储引擎
查看>>
mysql 存储过程 注入_mysql 视图 事务 存储过程 SQL注入
查看>>
MySQL 存储过程参数:in、out、inout
查看>>
mysql 存储过程每隔一段时间执行一次
查看>>
mysql 存在update不存在insert
查看>>
Mysql 学习总结(86)—— Mysql 的 JSON 数据类型正确使用姿势
查看>>
Mysql 学习总结(87)—— Mysql 执行计划(Explain)再总结
查看>>
Mysql 学习总结(88)—— Mysql 官方为什么不推荐用雪花 id 和 uuid 做 MySQL 主键
查看>>
Mysql 学习总结(89)—— Mysql 库表容量统计
查看>>
mysql 实现主从复制/主从同步
查看>>
mysql 审核_审核MySQL数据库上的登录
查看>>