博客
关于我
E. Sonya and Ice Cream【树的直径+单调队列】
阅读量:528 次
发布时间:2019-03-08

本文共 2519 字,大约阅读时间需要 8 分钟。

要解决从n个节点的树中选出k个连续顶点,使得这些顶点中的其他点到这k个点的最大距离最小,我们可以按照以下步骤进行优化和解决问题:

1. 计算树的直径

使用两次深度优先搜索(DFS)来确定树的直径。第一次DFS从任意一点出发,找到离该点最远的点u,作为直径的一端。第二次DFS从u出发,找到离u最远的点v,作为直径的另一端。

2. 计算各顶点到直径端点的距离

对于每个顶点,计算其到直径端点u和v的距离。这可以通过两次DFS完成:第一次从u出发,记录每个节点的距离;第二次从v出发,记录每个节点的距离。

3. 枚举直径上的连续k个顶点窗口

在直径上进行滑动窗口,求出所有长度为k的连续顶点窗口。每个窗口包括窗口的端点以及内部的k-2个顶点。

4. 使用单调队列计算窗口的最大值

将窗口的两个端点及预处理的直径距离存储在单调队列中,根据队列中的值维护当前窗口的最大距离。每次移动窗口时,更新队列以确保最大距离准确。

5. 表达最优解

根据分析,连续k个顶点窗口的最大距离等于窗口的两个端点到直径端点的距离的最大值。最终,最小最大距离即为直径窗口中各个可能窗口中的最大距离的最小值。

伪代码实现

#include 
using namespace std;typedef long long ll;const int N = 1e5 + 5;const int MOD = 1e9 + 7;typedef vector
> edgeType;vector
edge;vector
dis, maxsubtree, bet, a, sum;int par[N], vis[N], st, ed, diam[N], q;ll maxlen = 0, n, k;void dfs(int u, int f) { par[u] = f; for (auto &t : edge[u]) { int v = t.first, w = t.second; if (v != f && !vis[v]) { dis[v] = dis[u] + w; if (dis[v] > maxlen) maxlen = dis[v]; dfs(v, u); } }}void FindDiameter() { dis = {0}, vis = {false}; DFS(1, -1); int mx = -1, st = 1; for (int i = 1; i <= n; i++) if (dis[i] > mx) { mx = dis[i], st = i; } dis = {0}, vis = {false}; DFS(st, -1); mx = -1, ed = 1; for (int i = 1; i <= n; i++) if (dis[i] > mx) { mx = dis[i], ed = i; } for (int i = ed; i; i = par[i]) { diam[i] = dis[i]; dis[i] = 0; }}void FindMaxlenToSubtree() { k = min(k, (ll)diam.size()); for (int u : diam) vis[u] = 1; for (int u : diam) { maxlen = 0; dis[u] = 0; DFS(u, -1); maxsubtree.push_back(maxlen); dis[u] = 0; }}int main() { cin >> n >> k; for (int i = 1; i < n; i++) { int u, v, w; cin >> u >> v >> w; edge[u].push_back({v, w}); edge[v].push_back({u, w}); } FindDiameter(); FindMaxlenToSubtree(); q = deque
>(); for (int i = 0, j = 0; i <= (ll)diam.size() - k; i++) { while (j <= i + k - 1) { while (!q.empty() && maxsubtree[j] > q.back().first) q.pop_back(); q.push_back({maxsubtree[j], j}); j++; } while (q.front().second < i) q.pop_front(); ll current_max = q.front().first; if (current_max < ans) ans = current_max; if (i + k < diam.size()) { while (!q.empty() && maxsubtree[i + k] > q.back().first) q.pop_back(); q.push_back({maxsubtree[i + k], i + k}); } } cout << ans;}

结论

通过上述步骤,我们能够高效地计算出k个连续顶点,使得其他顶点到这k个点的最大距离最小化。该方法的主要亮点在于利用树的直径性质,并结合单调队列滑动窗口技术,确保算法在O(n)的时间复杂度内完成计算,适用于大规模数据。

转载地址:http://kfkiz.baihongyu.com/

你可能感兴趣的文章
NDK编译错误expected specifier-qualifier-list before...
查看>>
Neat Stuff to Do in List Controls Using Custom Draw
查看>>
Necurs僵尸网络攻击美国金融机构 利用Trickbot银行木马窃取账户信息和欺诈
查看>>
Needle in a haystack: efficient storage of billions of photos 【转】
查看>>
NeHe OpenGL教程 07 纹理过滤、应用光照
查看>>
NeHe OpenGL教程 第四十四课:3D光晕
查看>>
Neighbor2Neighbor 开源项目教程
查看>>
neo4j图形数据库Java应用
查看>>
Neo4j图数据库_web页面关闭登录实现免登陆访问_常用的cypher语句_删除_查询_创建关系图谱---Neo4j图数据库工作笔记0013
查看>>
Neo4j图数据库的介绍_图数据库结构_节点_关系_属性_数据---Neo4j图数据库工作笔记0001
查看>>
Neo4j图数据库的数据模型_包括节点_属性_数据_关系---Neo4j图数据库工作笔记0002
查看>>
Neo4j安装部署及使用
查看>>
Neo4j电影关系图Cypher
查看>>
Neo4j的安装与使用
查看>>
Neo4j(1):图数据库Neo4j介绍
查看>>
Neo4j(2):环境搭建
查看>>
Neo4j(3):Neo4j Desktop安装
查看>>
Neo4j(4):Neo4j - CQL使用
查看>>
Neo图数据库与python交互
查看>>
NEO改进协议提案1(NEP-1)
查看>>