博客
关于我
E. Sonya and Ice Cream【树的直径+单调队列】
阅读量:528 次
发布时间:2019-03-08

本文共 2519 字,大约阅读时间需要 8 分钟。

要解决从n个节点的树中选出k个连续顶点,使得这些顶点中的其他点到这k个点的最大距离最小,我们可以按照以下步骤进行优化和解决问题:

1. 计算树的直径

使用两次深度优先搜索(DFS)来确定树的直径。第一次DFS从任意一点出发,找到离该点最远的点u,作为直径的一端。第二次DFS从u出发,找到离u最远的点v,作为直径的另一端。

2. 计算各顶点到直径端点的距离

对于每个顶点,计算其到直径端点u和v的距离。这可以通过两次DFS完成:第一次从u出发,记录每个节点的距离;第二次从v出发,记录每个节点的距离。

3. 枚举直径上的连续k个顶点窗口

在直径上进行滑动窗口,求出所有长度为k的连续顶点窗口。每个窗口包括窗口的端点以及内部的k-2个顶点。

4. 使用单调队列计算窗口的最大值

将窗口的两个端点及预处理的直径距离存储在单调队列中,根据队列中的值维护当前窗口的最大距离。每次移动窗口时,更新队列以确保最大距离准确。

5. 表达最优解

根据分析,连续k个顶点窗口的最大距离等于窗口的两个端点到直径端点的距离的最大值。最终,最小最大距离即为直径窗口中各个可能窗口中的最大距离的最小值。

伪代码实现

#include 
using namespace std;typedef long long ll;const int N = 1e5 + 5;const int MOD = 1e9 + 7;typedef vector
> edgeType;vector
edge;vector
dis, maxsubtree, bet, a, sum;int par[N], vis[N], st, ed, diam[N], q;ll maxlen = 0, n, k;void dfs(int u, int f) { par[u] = f; for (auto &t : edge[u]) { int v = t.first, w = t.second; if (v != f && !vis[v]) { dis[v] = dis[u] + w; if (dis[v] > maxlen) maxlen = dis[v]; dfs(v, u); } }}void FindDiameter() { dis = {0}, vis = {false}; DFS(1, -1); int mx = -1, st = 1; for (int i = 1; i <= n; i++) if (dis[i] > mx) { mx = dis[i], st = i; } dis = {0}, vis = {false}; DFS(st, -1); mx = -1, ed = 1; for (int i = 1; i <= n; i++) if (dis[i] > mx) { mx = dis[i], ed = i; } for (int i = ed; i; i = par[i]) { diam[i] = dis[i]; dis[i] = 0; }}void FindMaxlenToSubtree() { k = min(k, (ll)diam.size()); for (int u : diam) vis[u] = 1; for (int u : diam) { maxlen = 0; dis[u] = 0; DFS(u, -1); maxsubtree.push_back(maxlen); dis[u] = 0; }}int main() { cin >> n >> k; for (int i = 1; i < n; i++) { int u, v, w; cin >> u >> v >> w; edge[u].push_back({v, w}); edge[v].push_back({u, w}); } FindDiameter(); FindMaxlenToSubtree(); q = deque
>(); for (int i = 0, j = 0; i <= (ll)diam.size() - k; i++) { while (j <= i + k - 1) { while (!q.empty() && maxsubtree[j] > q.back().first) q.pop_back(); q.push_back({maxsubtree[j], j}); j++; } while (q.front().second < i) q.pop_front(); ll current_max = q.front().first; if (current_max < ans) ans = current_max; if (i + k < diam.size()) { while (!q.empty() && maxsubtree[i + k] > q.back().first) q.pop_back(); q.push_back({maxsubtree[i + k], i + k}); } } cout << ans;}

结论

通过上述步骤,我们能够高效地计算出k个连续顶点,使得其他顶点到这k个点的最大距离最小化。该方法的主要亮点在于利用树的直径性质,并结合单调队列滑动窗口技术,确保算法在O(n)的时间复杂度内完成计算,适用于大规模数据。

转载地址:http://kfkiz.baihongyu.com/

你可能感兴趣的文章
MySQL“被动”性能优化汇总
查看>>
MySQL、HBase 和 Elasticsearch:特点与区别详解
查看>>
MySQL、Redis高频面试题汇总
查看>>
MYSQL、SQL Server、Oracle数据库排序空值null问题及其解决办法
查看>>
mysql一个字段为空时使用另一个字段排序
查看>>
MySQL一个表A中多个字段关联了表B的ID,如何关联查询?
查看>>
MYSQL一直显示正在启动
查看>>
MySQL一站到底!华为首发MySQL进阶宝典,基础+优化+源码+架构+实战五飞
查看>>
MySQL万字总结!超详细!
查看>>
Mysql下载以及安装(新手入门,超详细)
查看>>
MySQL不会性能调优?看看这份清华架构师编写的MySQL性能优化手册吧
查看>>
MySQL不同字符集及排序规则详解:业务场景下的最佳选
查看>>
Mysql不同官方版本对比
查看>>
MySQL与Informix数据库中的同义表创建:深入解析与比较
查看>>
mysql与mem_细说 MySQL 之 MEM_ROOT
查看>>
MySQL与Oracle的数据迁移注意事项,另附转换工具链接
查看>>
mysql丢失更新问题
查看>>
MySQL两千万数据优化&迁移
查看>>
MySql中 delimiter 详解
查看>>
MYSQL中 find_in_set() 函数用法详解
查看>>